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Lam Research at a glance

A leader in wafer fabrication equipment and services since 1980

Global R&D, engineering, manufacturing, customer support and supply chain

~18,700 employees

Service & SupportEtch & Strip Deposition Clean
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Grand Challenges: Let’s Create our own Future
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Welcome to 2030 – The Era of Smart Tools and Smart Fabs

Smart tools are ubiquitous

Fab output has achieved unprecedented profitability
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Equipment Intelligence ® 
Platform
Transforming Production
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Self-aware tools know what parts are inside and 
the properties of those parts past and present

What paces the development of self-awareness?

Challenges:

 All-digital supply chain

 End-to-end and point-to-point data transfers

 Standards

 IP

Self-Aware
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Auto Positioning System

Self-Aware, Self-Maintained…  
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What Paces the Development of Self-Maintenance?

Self-Maintained

Self-maintained tools know when maintenance is
 required and perform maintenance automatically

Challenges:

 Tool architectures

 Fab infrastructure

 Fab-tool co-design

 Standards
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Self-Aware, Self-Maintained, and Self-Adaptive

Machine learning on LSR-FM improved depth variability to ±1%

Virtual Metrology Etch Depth
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What Paces the Development of Adaptability?

Adaptive

Adaptive tools adjust themselves to compensate 
for unit process and incoming material 

variation to maintain consistent yield

Challenges:

 Data flow across unit modules

 Algorithms

 Standards

 IP
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A new industry mindset is required

The semiconductor eco-system has to respond collaboratively
All-digital supply chain

End-to-end and point-to-point data transfer

Co-design of fab and tool

Big data and algorithms

Standards and IP

Collaborative response must deliver equitable returns

Equipment Intelligence® Solutions Are More Than Just a Smart Tool
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Semiverse™ Solutions
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Digital Twin and Thread:
Virtual representation of real asset including associated data and 
processes of record for all parts in the system
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Virtual Build: 
Digital design for 
manufacturability and 
serviceability

Digital twin and thread enables: 
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VR/AR-Led Training 
and Installation:
Step-by-step instructions 
for system installs and 
post- installation service

Digital twin and thread enables: 
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Virtual Process Development
Transforming R&D
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We develop the processes that make the chips

300 mm Wafer Chip Just because you can design a chip, 
doesn’t mean you can make it

Source: Intel Museum

Source: Chipworks
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How much data from a semiconductor fab?

Example: Fleet running at high 
capacity
Fleet Size  200 chambers

Sensors  100 / chamber

Frequency  5 Hz

5 to 10 billion raw data points per 
day

Depending on the nature and 
complexity of the process 

100 million feature data 
points per day

For each single wafer process 
run, there could be as many 
as 5,000 features extracted
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Moore’s Law Engineers must choose 
from many recipe 
combinations with little 
data available.  The 
number of recipe 
combinations expected 
by 2030 will approach 
the number of silicon 
atoms in a computer 
chip
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Yet we still do process engineering the “old” way…

Customer asks for Spec Spec is metHuman process engineering
• Make hypothesis
• Choose recipes
• Run experiments

• Prep for metrology
• Image collection
• Data analysis

REPEAT
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ResultSpec Recipe

Why can’t we design a process like we design a chip?
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Why Not Just Use Physics?...

Too Many Unknowns, Complex Equations to 
Solve
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Would a Purely Data-Driven Approach Work?

R&D is a Little Data World!
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Consider 
memory hole 
etch in 3D 
NAND

Memory cell

1 µm

SEM of 3D NAND Samsung 92L, 256Gb, TLC, Tech Insights
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Let’s play a “game” to benchmark different AI (and human) approaches 

to developing an Etch Process Recipe
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Virtual Environment for High Aspect Ratio Etch

Cost structure: $1,000/recipe + $1,000/batch of recipes
Added variability: none

Source: Kanarik et al., accepted at Nature Jan 31, 2023
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Goal of game: Lowest cost-to-target 
recipe
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Undirected Machines are No Match for Expert Process Engineers

Process engineers Inexperienced humans Computer algorithm

Winner: 
$105,000

Senior engineer #1
Senior engineer #2
Senior engineer #3
Junior engineer #1
Junior engineer #2
Junior engineer #3
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Human expert advantage occurs early in development

Fine-tuning stage

• Very close to spec
• Hyper-sensitive, 

physics seems to 
break down

• Smaller changes, 
smaller dynamic 
range

• Can take >50% of 
demo for engineer

Rough-tuning stage

• Baseline from 
experience 

• Move rapidly 
towards spec

• Domain knowledge: 
macro trends, 
physics principles 
and models, tribal 
knowledge, 
previous trends

Rough 
tuning

Fine tuning
A

B
DC E

Expert trajectory

Rough 
tuning

Fine tuning
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Transfer point “A”: Computer improves but not enough
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A

B
DC E

Expert Results – Without ML

Expert

Attempt 1 Attempt 2 Attempt 3

Attempt 4 Attempt 5 Attempt 6

Transfer from here 
has 99% ML trial 
success rate: ML 
with human can 
consistently beat 
expert’s total 
development cost

Transfer Point C

Machine Learning Trials – Cost to Target (6 attempts shown)

Expert
Algorithm

Transfer point “C”: Human First, Computer Last Lowers Cost
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Optimal transfer point not too soon or too late (circled area)
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Embrace human 
machine collaboration: 
Humans for creative 
work and machines 
for repetition and 
tedious work0 25 50 75 100
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Source: Nature, 2023



Human–Machine Collaboration 
for Improving Semiconductor 
Process Development
Nature 616, 707 (2023)

Keren J. Kanarik, Wojciech T. Osowiecki, Yu (Joe) Lu, Dipongkar Talukder, 

Niklas Roschewsky, Sae Na Park, Mattan Kamon, David M. Fried,  Richard A. Gottscho

Scan with your phone for 
link to paper:
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Semiverse™ Solutions for 10,000x lower cost

Virtualization leverages (not replaces!) investment 
in physical assets and real experiments

Virtual experimentation saves time, money, and 
resources (per recipe)

• Real experiments - $1,000, 0.5 days
• Simulated experiments - $0.11, 8 minutes
• Emulated simulations - $3e-07, 0.0013 seconds

Virtual experimentation can be ubiquitous and an 
effective workforce training tool

Barriers
• Business model
• Some invention required
• Data sharing/ownership concerns

Virtual 
tool:

Virtual 
fab:

Virtual 
process:
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Conclusions

The R&D little data problem requires maximum leveraging of information from real experiments

Models don’t have to be accurate to be useful. They do need to be realistic.

The virtual environment can be used in workforce development
• Challenge problems
• Built-in analytics

The virtual environment enables speed to solution

The virtual environment reduces costs

Virtual process development – no panacea, but close!



LAM  R E S E AR C H
Chip

High aspect 
ratio etch

Electronics

Recipes and 
controls

Semiconductor 
equipment

AlgorithmWe see ourselves 
in a virtuous, 
accelerating 
spiral of 
innovation
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Q&A
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