Chips Making Chips:

How Virtualization, Digital Twins and Machine Learning are Accelerating the Spiral of Innovation

David M. Fried Corporate Vice President – Semiverse[™] Solutions

Presented at MES & Industry 4.0 Summit, September 7, 2023

Lam Research at a glance

A leader in wafer fabrication equipment and services since 1980

Global R&D, engineering, manufacturing, customer support and supply chain

~18,700 employees

heriturof Teachaology

Time

Grand Challenges: Let's Create our own Future

LAM RESEARCH

Welcome to 2030 – The Era of Smart Tools and Smart Fabs

Smart tools are ubiquitous

Fab output has achieved unprecedented profitability

•	•	•	•	•	•	•	•••	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•••	•	•	•	•	•	•	•	•	•	•	•	•	•••	•	•	•	•	•	•	•	•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•••	•	•	•	•	•	•	•	•	•	•	•	•	•••	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
																		•	•	•••	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
																				•••				•				• •														•			
																								•																					

Equipment Intelligence ® Platform

Transforming Production

What is intelligence?

- Self-aware
- Self-maintained
 - Self-adaptive

What paces the development of self-awareness?

Self-aware tools *know* what parts are inside and the properties of those parts past and present

Challenges:

- All-digital supply chain
- End-to-end and point-to-point data transfers
- Standards
- IP

Self-Aware, Self-Maintained...

Auto Positioning System

What Paces the Development of Self-Maintenance?

Self-maintained tools know when maintenance is required and *perform* maintenance automatically

Self-Maintained

Challenges:

- Tool architectures
- Fab infrastructure
- Fab-tool co-design
- Standards

Self-Aware, Self-Maintained, and Self-Adaptive

Machine learning on LSR-FM improved depth variability to $\pm 1\%$

What Paces the Development of Adaptability?

Adaptive tools adjust themselves to compensate for unit process and incoming material variation to maintain consistent yield

Challenges:

- Data flow across unit modules
- Algorithms
- Standards

■ IP

Adaptive

Equipment Intelligence[®] Solutions Are More Than Just a Smart Tool

A new industry mindset is required

The semiconductor eco-system has to respond collaboratively

- All-digital supply chain
- End-to-end and point-to-point data transfer
- Co-design of fab and tool
- Big data and algorithms
- Standards and IP

Collaborative response must deliver equitable returns

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
																			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
																																														•			

SemiverseTM Solutions

Digital Twin and Thread:

Virtual representation of real asset including associated data and processes of record for all parts in the system

Digital twin and thread enables:

Virtual Build:

Digital design for manufacturability and serviceability

Digital twin and thread enables:

VR/AR-Led Training and Installation: Step-by-step instructions for system installs and post- installation service

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
																			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
																																														•			

Virtual Process Development

Transforming R&D

We develop the processes that make the chips

How much data from a semiconductor fab?

- Example: Fleet running at high capacity
- Fleet Size 200 chambers
- Sensors 100 / chamber
- Frequency 5 Hz

Depending on the nature and complexity of the process 100 million feature data points per day

5 to 10 billion raw data points per day

For each single wafer process run, there could be as many as 5,000 features extracted

Moore's Law and "Lam's Law"

Engineers must choose from many recipe combinations with little data available. The number of recipe combinations expected by 2030 will approach the number of silicon atoms in a computer chip

LAM RESEARCH

Yet we still do process engineering the "old" way...

Customer asks for Spec

Human process engineering

- Make hypothesis
- Choose recipes
- Run experiments

- Prep for metrology Image collection
- Data analysis

REPEAT

Spec is met

Why can't we design a process like we design a chip?

and have been been and	ilian ilian	Sevelarja-Notr'i Accelope XX	Same	-
	Contraction of the second seco	The last		
1000 E1 E	197 - 1	107 1075 HT		
PRESSURE	50 m T	тсст	1.5 Vb	I.
TCP POWER	1000 W	STG	5 02	T.
BIAS VOLTAGE	500 Vb	TESC	1.5	
AR FLOW	200 sccm	DC	10%	
CF4 FLOW	1000 W	FREQUENCY	100 Hz	
O2 FLOW	500 Vb	TIME	90 sec	
ESC T	60 °C	тсст	500 Vb	
Contrary Property				an Second and

LAM RESEARCH

Consider memory hole etch in 3D NAND

Memory cell

SEM of 3D NAND Samsung 92L, 256Gb, TLC, Tech Insights

LAM RESEARCH

Let's play a "game" to benchmark different AI (and human) approaches to developing an Etch Process Recipe

Virtual Environment for High Aspect Ratio Etch

Cost structure: \$1,000/recipe + \$1,000/batch of recipes **Added variability:** none

Goal of game: Lowest cost-to-target recipe

LAM RESEARCH

Undirected Machines are No Match for Expert Process Engineers

LAM RESEARCH

Human expert advantage occurs early in development

Expert trajectory

Fine-tuning stage

LAM RESEARCH

Baseline from
experience

- Move rapidly towards spec
- Domain knowledge: macro trends, physics principles and models, tribal knowledge, previous trends

• Very close to spec

- Hyper-sensitive, physics seems to break down
- Smaller changes, smaller dynamic range
- Can take >50% of demo for engineer

Transfer point "A": Computer improves but not enough

Expert Results – Without ML Attempt 2 Attempt 1 1.0 1.0 1.0 Expert Progress tracker (A. I.) Algorithm 0.8 Transfer Point A 0.8 0.6 Progress tracker (A. I.) Transfer from here 0.4 has 42% ML trial 0.6 0.2 success rate: ML cannot consistently 0.0 50 150 200 100 50 100 n 0.4 beat expert's total Cumulative cost (\$K) Cumulative cost (\$K) 1.0 1.0 development cost Attempt 5 Attempt 4 Progress tracker (A. I.) Distance-to-target 0.2 0.0 100 120 20 60 80 0 Development Cost (\$K)

0.0[⊥]0

50

100

Cumulative cost (\$K)

150

200

Machine Learning Trials – Cost to Target (6 attempts shown)

Attempt 3

1.0

0.0[⊥]0

1.0

-to-target 0.0 8.0

Distance-1 5'0

0.0∔ 0

50

100

Cumulative cost (\$K)

150

200

50

100

Cumulative cost (\$K)

150

Attempt 6

200

150

0.0[⊥]0

50

100

Cumulative cost (\$K)

150

200

200

AM RESEARCH

Transfer point "C": Human First, Computer Last Lowers Cost

Expert Results – Without ML

Machine Learning Trials – Cost to Target (6 attempts shown)

Optimal transfer point not too soon or too late (circled area)

Experimental V-curve

Schematic of V-curve

Amount of expert data \rightarrow

LAM RESEARCH

Embrace human machine collaboration: Humans for creative work and machines for repetition and tedious work

Human–Machine Collaboration for Improving Semiconductor Process Development

Nature 616, 707 (2023)

Keren J. Kanarik, Wojciech T. Osowiecki, Yu (Joe) Lu, Dipongkar Talukder,

Niklas Roschewsky, Sae Na Park, Mattan Kamon, David M. Fried, Richard A. Gottscho

Scan with your phone for link to paper:

Semiverse[™] Solutions for <u>10,000x lower cost</u>

Virtualization *leverages* (not replaces!) investment in physical assets and real experiments

Virtual experimentation saves time, money, and resources (per recipe)

- Real experiments \$1,000, 0.5 days
- Simulated experiments \$0.11, 8 minutes
- Emulated simulations \$3e-07, 0.0013 seconds

Virtual experimentation can be ubiquitous and an effective workforce training tool

Barriers

Business model

M RESEARCH

- Some invention required
- Data sharing/ownership concerns

Virtual process:

fab:

Conclusions

The R&D little data problem requires maximum leveraging of information from real experiments

Models don't have to be accurate to be useful. They do need to be *realistic*.

The virtual environment can be used in workforce development

- Challenge problems
- Built-in analytics

The virtual environment enables speed to solution

The virtual environment reduces costs

Virtual process development – no panacea, but close!

We see ourselves in a virtuous, accelerating spiral of innovation

•	•	•	•	•	•	•	•	•																				
•	•	•	•	•	•	•	•	•																				
•	•	•	•	•	•	•		•																				
•	•	•	•	•	•	•	•	•																				
•	•	•	•	•	•	•	•	•																				
•	•	•		•	•	•	•	•																				